

ПРИЛОЖЕНИЯ

Рекомендации по выбору редукторов и мотор-редукторов

1. Общие пояснения

Выбор редуктора или мотор-редуктора (далее – редуктора) состоит в определении по таблице технических характеристик настоящего каталога его типоразмера.

Редукторы эксплуатируются в различных условиях и режимах эксплуатации, что необходимо учитывать при их выборе, поэтому исходными данными для выбора редуктора являются:

- крутящий момент Т_{расч}, воспринимаемый выходным валом редуктора и соответствующий нормально протекающему (установившемуся) процессу работы механизма, Н·м;
- частота вращения выходного вала, n_2 , мин⁻¹;
- частота вращения входного вала, n_1 , мин $^{-1}$ (либо требуемое передаточное отношение i);
- характер внешней нагрузки;
- продолжительность суточной работы;
- частота пусков;
- наличие реверсивного режима работы;
- тип применяемого смазочного материала;
- температура окружающей среды;
- наличие упругих элементов (муфты, ремни и др.) на входном и выходном валу редуктора.

Также следует учесть требуемые конструктивные особенности входного и выходного валов:

- конец вала конический или цилиндрический;
- выходной вал полый с шлицевым отверстием.

2. Выбор типоразмера редуктора

Выбор типоразмера редуктора производится по таблице технических характеристик данного каталога.

2.1. Рассчитывают требуемое передаточное отношение редуктора:

$$i_{p} = \frac{n_{1P}}{n_{2P}} \tag{1}$$

где:

п, - частота вращения входного вала расчётная;

 $n_{_{7P}}$ — частота вращения выходного вала расчётная.

2.2. Определяют расчётно-эксплуатационное значение крутящего момента $T_{_{2P3}}$ на выходном валу:

$$T_{2P3} = T_{PACH} \cdot K_3 \tag{2}$$

где:

 T_{PACY} - расчётный крутящий момент на выходном валу редуктора, соответствующий нормально протекающему (установившемуся) процессу работы механизма, $H \cdot M$;

 ${\rm K_{_{9}}}$ - эксплуатационный коэффициент, учитывающий фактические условия эксплуатации и режим работы редуктора:

$$K_{9} = K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{4} \cdot K_{5} \tag{3}$$

Значения коэффициентов $K_1 - K_5$ выбираются по таблицам 1 - 5, исходя из фактических условий и режимов эксплуатации редуктора.

- 2.3. По таблице технических характеристик редуктора:
- сравнивают расчетное значение передаточного отношения с табличными и находят ближайшее меньшее $i_{_{\rm H}}$ и ближайшее большее значение $i_{_{\rm B}}$
- для найденных i_{M} и i_{E} :
 - сравнивают табличные значения частот вращения валов редуктора \mathbf{n}_1 и \mathbf{n}_2 с их исходными (требуемыми) значениями;
 - сравнивают табличные значения передаваемых моментов;
 - из двух значений i_M и i_B выбирают передаточное отношение і редуктора в зависимости от наиболее значимых конструкторско-эксплуатационных факторов, таких как:
 - * минимум отклонения от требуемого значения параметра n₂;
 - * максимум передаваемого момента;

- для выбранного значения і сравнивают табличные значения T_2 с расчетным значением T_{2P2} и находят:
 - ближайшее меньшее значение крутящего момента Т2м;
 - ближайшее большее значение крутящего момента Т₂₅;
- определяют:
 - типоразмер редуктора, соответствующий ближайшему меньшему значению крутящего момента $T_{_{2M}}$;
 - типоразмер редуктора, соответствующий ближайшему большему значению крутящего момента T_{26} .
- 2.4. Сравнивают технико-эксплуатационные показатели, габариты и массу редукторов и производят дополнительный конструктивно-эксплуатационный анализ в целях определения возможности выбора редуктора ближайшего меньшего типоразмера.

Для этого пересматривают конструкцию машины (условия и режимы ее эксплуатации) в целях уменьшения значения эксплуатационного коэффициента K_9 и, соответственно, уменьшения расчетно-эксплуатационного момента T_{2P3} до значения $T_{2P3} \leqslant T_2$.

Таблица 1 — Коэффициент режима эксплуатации К,

Время работы в сутки		4 часа		8 часов		16 часов		24 часа					
Частота пусков в час		<10	10-100	>100	<10	10-100	>100	<10	10-100	>100	<10	10-100	>100
Характер нагрузки	равно- мерная	1	1	1	1	1	1,1	1	1,1	1.2	1,1	1,2	1,3
	средние толчки	1	1,1	1,3	1,1	1,2	1,3	1,2	1,3	1,4	1,3	1,4	1,5
	сильные толчки	1,2	1,3	1,4	1,3	1,4	1,5	1,4	1,5	1,6	1,5	1,6	1,7

Таблица 2 — Температурный коэффициент ${\bf K_2}$

Температура	Продолжительность включения (ПВ), %							
окружающей среды, °С	100 80 60		40	20				
10	1	,0	0,9	0,8	0,7			
20	1,0			0,9	0,8			
30	1,2	1,15	1,1	1,0	0,9			
40	1,4	1,3	1,2	1,1	1,0			
50	1,6	1,4	1,3	1,2	1,1			

Таблица 3 — **Коэффициент смазки К** $_{\mathfrak{3}}$

Тип смазки	K ₃
Синтетическая с присадкой	0,8
Синтетическая	1,0
Минеральная	1,2

Таблица 4 — Коэффициент наличия упругих элементов К₄

Наличие упру	гих элементов	Частота пусков в час					
На входном валу	На выходном валу	до 10	свыше 10 до 50	свыше 50			
Да	Да	1,0	1,05	1,1			
Нет	Да	1,1	1,15	1,2			
Да	Нет	1,15	1,2	1,3			
Нет	Нет	1,2	1,3	1,4			

Таблица 5 — Коэффициент реверсивных пусков $\mathbf{K_5}$

Наличие реверсивного движения	K ₅
Реверсивные пуски отсутствуют	1,0
Реверсивные пуски после остановки более 10 сек	1,0
Реверсивные пуски после остановки 2-10 сек	1,2-1,0
Реверсивные пуски после остановки менее 2-х сек	1,3